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Abstract—We consider the problem of having a team of
unmanned aerial vehicles (UAVs) and unmanned ground vehicles
(UGVs) pursue a second team of evaders while concurrently
building a map in an unknown environment. We cast the problem
in a probabilistic game theoretical framework, and consider two
computationally feasible greedy pursuit policies:local-max and
global-max To implement this scenario on real UAVs and UGVs,
we propose a distributed hierarchical hybrid system architecture
which emphasizes the autonomy of each agent, yet allows for
coordinated team efforts. We describe the implementation of the
architecture on a fleet of UAVs and UGVs, detailing components
such as high-level pursuit policy computation, map building and
interagent communication, and low-level navigation, sensing, and
control. We present both simulation and experimental results
of real pursuit-evasion games involving our fleet of UAVs and
UGVs, and evaluate the pursuit policies relating expected capture
times to the speed and intelligence of the evaders and the sensing
capabilities of the pursuers. Fig. 1. Berkeley AeRobot test bed for pursuit-evasion games.

Aerial Pursuer

Index Terms—Autonomous vehicles, multiagent coordination ] o .
and control, multirobot systems, pursuit—evasion games. We cast the problem in a probabilistic game theoretical frame-

work that combines pursuit—evasion games and map building
in asingleproblem, which avoids the conservativeness inherent
to classical worst-case approaches. We consider two computa-
HE BErkeley AeRobot (BEAR) project is a researchionally feasible pursuit policietocal-maxandglobal-max We
effort at the University of California at Berkeley that enprove that for the global-max policy, there exists an upper bound
compasses the disciplines of hybrid systems theory, navigation, the expected capture time which depends on the size of the
control, computer vision, communications, and multiagearena, and the speed and sensing capabilities of the pursuers.
coordination. The goal of our research is to integrate multiple In order to implement this pursuit—evasion game scenario
autonomous agents with heterogenous capabilities into a comm-a fleet of UAVs and UGVs, we propose a distributed hi-
dinated and intelligent system that is modular, scalable, faeltarchical hybrid system architecture that segments the con-
tolerant, adaptive to changes in task and environment, and aip& task into different layers of abstraction: high-level pursuit
to efficiently perform complex missions. This paper highlightpolicy computation, map building and interagent communica-
the theory, implementation, and evaluation of probabilistiion, and low-level tactical planning, navigation, regulation, and
pursuit—evasion games on the BEAR test bed of unmannsshsing. Our architecture is modular and scalable, allowing one
aerial vehicles (UAVs) and unmanned ground vehicles (UGVR) “divide and conquer” a complex large-scale system by de-
shown in Fig. 1. veloping and integrating simpler components. Unlike the tra-
In this scenario, a team of UAV and UGMIrsuersattempts ditional sense—model—plan—ad¢composition, our architecture
to captureevaderswithin a bounded but unknown environmenttakes into consideration the dynamics of each agent so that our
system can achieve real-time performance.
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changes in the conditions of the game. Even though it is de- [I. PURSUIT-EVASION SCENARIO
signed for a randomly moving evader, the policy is also suc-

. . . ) This section describes the theoretical foundations for proba-
cessful in catching an intelligent evader.

bilistic pursuit—evasion games, including map building, pursuit
policies, and evasion policies. We also describe a vision-based
A. Previous Research in Pursuit-Evasion Games algorithm for obstacle and evader detection.

Notation. We denote by (2, F, P) the relevanprobability

'_I'he classical approac_:h fo pursuit-evasion games s to ﬁ%?}acewith Q the set of all possible events related to the pur-
build a map of the terrain and then play the game in a knov%r&it—evasion gamer a family of subsets of? forming ac al-
environment. For the map-building stage, several techniq ra, and>: F — [0, 1] a probability measure off. Given

have been proposed, see, e.g., [1]_and.references .therein. Stsets of eventd, B € F with P(B) # 0, we writeP(A|B)
of them are based on Bayesian estimation and are impleme heconditional probability of4 givenB. Boldface symbols
using the Extended Kalman Filter. The main problem witQ . \,sed to denote random variables.

these map-building techniques is that they are time consuming
and computationally expensive, even in the case of simp')&e
two-dimensional (2-D) rectilinear environments [2]. On the"
other hand, most of the literature in pursuit-evasion games, se&onsider a finite 2-D environmed with n. square cells
e.g., [3]-[6], assumes worst-case motion for the evaders gffitaining an unknown number of fixed obstacles, anstjet
an accurate map of the environment. In practice, this resultstn(*. C &) be the set of cells occupied by thg pursuersi.
overly conservative pursuit policies applied to inaccurate map¥aders). Pursuers and evaders are allowed to move to cells in
built from noisy measurements. X in which there is no other pursuer, evader, or obstacle.
In [7], the pursuit-evasion game and map-building problems Each pursuer (evader) gollects information ab&uat dis-
are combined in a single probabilistic framework. The basfgete time instants € 7 = {1, 2, ...}. Each measurement
scenario considers multiple pursuers trying to capture a single) is a triple {v(t), e(¢),o(?)} taking values in a measure-
randomly moving evader. In [8], we extended the scenario ent spacg’, wherev () denotes the measured positions of the
consider multiple evaders, and proposed a simple vision-bagatisuers, ane(t) (o()) is a set of cells where evaders (obsta-
algorithm for evader detection. We also included supervisogles) are detected. We @t be the set of all finite sequences of
agents, such as a helicopter, that can detect evaders but not iginents in/, andY, € J* be the sequence of measurements
ture them. In parallel with our theoretical work on pursuit-evay (1), - - ., ¥(¢)} taken up to time. In practice, measurements
sion games, we have been developing a test bed for multiag@f& taken within a certain subsetdt the visibility region We
coordination and control. In [9], we presented a real-time cofienote the visibility region of pursuér(evaderi) at timet as
trol system for regulation and navigation of a UAV. In [8], weVp, (t) (Ve (%))
presented an architecture for pursuit-evasion games, and déensor information is assumed to be imperfect. We use a
scribed the implementations of the navigation, communicatiosimple sensor model based on the probability of false positives
and sensing layers. In [10], we presented the implementationpof [0, 1] and false negatives € [0, 1] of a pursuer detecting
the high-level mission coordination, including the componen@ evader or an obstacle. However, we assume that pursuers have
for pursuit policy computation and map building. perfect knowledge of their own locations, thatig) = x,,(¢).2
Recent work on pursuit-evasion games considers evaders thataptureof an evader is defined as follows: L&, (¢) € v(t)
actively avoid the pursuers, as described in [11], where a d§dz., (t) € e(t) be the estimated positions of ground pursuer
namic programming solution to a Stackelberg equilibrium of & and evadei at timet, respectively. We say that evadeis
partial-information Markov process is proposed. There has a@ptured by ground pursugrat timet if z.,(t) € V,, () and
been work on vision-based pursuit—evasion games, where the,, (1), z., (t)) < d,,, whered(-, -) is a metric inY’ andd,,, is
pursuers use optical flow to determine the number of movirggPrespecifie¢apture distanceCaptured evaders are removed
evaders as well as their position and orientation [12]. Implemefiom the game. Theapture timeof all evaders is defined as

tation and evaluation of these two techniques is forthcomingT* = max;—;...,, T}, whereT; is the time instant at which
evader; is captured. We assume that aerial pursuers can detect

and share information about the positions of evaders, but not
capture them.

The multiagent pursuit—-evasion game scenario considered in
this paper fits within the general framework of multirobot sysB. Map Building
tems. There exists a large body of literature in multirobot sys-\we assume that pursuers are able to identify each evader
tems addressing problems such as machine-learning technicgigsarately, and that each evader moves independently of the
for multiagent systems [13], hybrid algorithms for multiagengther evaders. Therefore, without loss of generality, we will
control [14], multirobot localization [15], distributed sensor fUassumme = 1 and omit the Subscript |dent|fy|ng each evader.

sion [16], and formation control [17]. Let p.(z, 7|Y;) be the posterior probability of the evader being
As-for-application.of multirobot.systems;in robot soccer, we

refer the reader to [18] and [19] for centralized coordination and,_ . o o .
1This assumption is unrealistic in general, although valid when a global po-

c_ont_rol of multiple robots, and to [20] and [21] for Comple’{ehéitioning system (GPS) is used for pursuer localization and vision is used for
distributed systems. evader detection.

Probabilistic Framework

B. Previous Research in Multirobot Systems
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in cell z at timer, given the measurement histok, = Y;. policies with good performance. To this end, we first introduce
Similarly, letp,(x|Y;) be the conditional probability of having the notion of a persistent pursuit policy [7] and show that it
an obstacle in celt givenY;. At eacht, pursuers have estimatesguarantees a certain degree of success for the pursuers. We then
of the evader and obstaaleapsp. (z, t|Y;—1) andp,(z|Y;—1), present two computationally efficient greedy policies and show
obtain a new measuremest(t), and recursively estimate that one of them satisfies the persistence property, given certain
po(z|Y:) and p.(z, t + 1Y) in three steps. First, pursuersassumptions on the distribution of the obstacles and the sensing
computep.(z, t|Y;) as models.

0if 2 € o(t) Uv(t) \ e(t), or the evader is captured 1) Persi;tent o*n the .Avaag_e Pusuit Eolicies: A specific
{ ape(, 1|Ys_1)P(e|z, v, Yi_1), otherwise pursun pollcyj: Y* — U is said to bepersistent on the avage

(1) f there is an integefl” and some: > 0, such that for each

where o is a normalizing constant independent f and ¢ € 7, the conditional probability of capturing evadeon the

P(elz,v,Yi_1) = P(e(t) = elx.(t) = z, v(t) = v, Y,_, = SetofT consecutive time instants startingfais greater than
Yi_1) / or equal toe, i.e.
. z € () P (T € {t, t41, ..., t+T—1}|g=7, T > ) > . (6)
a {p’“ (1 —p)*2qFs(1 — g)*, otherwise. )

We call T the period of persistencePersistent on the average

Here, for eachy, k; is the number of false positives; is the i L ) .
! P : s pursuit policies satisfy the following [7]:

number of true negativeg; is the number of false negative L 10 7. P i . h .
andk, is the number of true positives. Recall thaandq are I_emm_ah : !.]'g)T _)hu |;a£e*r3|stentont_ caverage pucrjswt
the probability of the sensor reporting false positives and falB@ |cy*W|t pe_rllo L then . (Ti" < clg =9) = L an

. . F3[Ti%] < Te ', with € as in (6).
negatives, respectively. g . . L :

Second, pursuers compute the obstacle mép|Y;) as Lemma 1shows that for a pursuit policy which is persistent
’ ! on the average, the probability of capturing evader finite
(1 = @)po(x]Yi1) , zeV,(t)no(t) timeisequal to one. Moreovdremma Igives a simple upper
(1 = @)po(w|Yi—1 Hp(1—po(2]Yi-1))’ bound on the expected capture time for evad@he following
qpo(x|Yi-1) lemma (proved in [22]) gives a sufficient condition for a policy
» € Vp(t)\o(t) b i h

qpo(x|Yi—1 H1—p)(1—po(z]Yi1)) to be persistent on the average.
Lemma 2: Let )4, be the set of all sequences of measure-

L e v(t)nolt) ments of length, associated with evadémot being found up
0, e v(t)\o(t) to timet. A sufficient condition for a pursuit policy to be per-
L po(2|Yi_1), otherwise sistent on the average with periddis the existence of some
(3) & > 0, such that for each € 7 and each’ € YV, ,, there
whereV,,(t) = U2, Vp, (1) is somer € {t—1,t, ..., t+ T — 2} for which P(T;* =

Finally, in order to computg. (=, t+1|Y;), pursuers assumer + 1|Y, = Y;, g = g) > 6. In this case, (6) holds with
a Markov model for the motion of the evader which is deter-

mined by the probability € [0, 1/8] that the evader moves 1 <1 3 l)T_l s> L

to an unoccupied cell ind(x), where A(x) is the set of (up to AT T ’ - T @)

eight) cells adjacent te. The evader map.(z, ¢+ 1|Y;) is up- 1

dated as 6(1 —6)T-1 5 < T

(1= A@)|p)pe (2, tY2) +p(1=po(z[V2)) D pe(T, tV2). 2) Admissible Policies, Obstacle Density, and Sensor
TEA(x) Models: In order to apphLemmas Jand2 to a specific pursuit

) policy, we will need some extra assumptions on the dynamics
of the pursuers, the distribution of the obstacles, and the sensor
models used for evader detection.

Given the measurement historyY;, the pursuers need First, we restrict our attention to pursuit policies that re-
to deAcide where to move at the next time instant. L%bect the dynamics of each vehicle. lZét (z,,) C X be

u(t) = [uy(t),..., u,,(¢)] be the desired position of thethe set of cells that pursuér can reach from cellr,, in

pursuers at time. Since two pursuers must not occupy thene time step, provided that those cells are empty, and let

saTe cell,u(t) is an element of the .cont.rol actlon. Spacg(y,,) A " U, (zp,)2 We say that a pursuit policy is

U={{v1, ..., vn, }:vi € X, v; #v;fori # j}. We define a admissibleif for every sequence of measuremefitse )*,

pursuit policyas the random functiog: Y* — U we haveg(Y) € U(x,), wherez, = (z,,, ..., z,, ) are the

A _ pursuers’ positions specified by the last measuremekhit in
g(Yo) Sut+1) = [w(t+1),..., w, (t+ 1) (5) Next, we assume that the density of obstacles in the environ-
We measure the performance of a specific pursuit pgjicyment is small enough so that any cellihcan be reached in a
by the expected capture tinig;[T*] = E[T*|g = g]. Since finite amount of time. More formally

the dependence @[ T*] on the pursuit policy; is, in general, _
| T L B B 1 solicy that min- °The one-step reachable séf, (,,) can be computed offline as a
very complex [7], ins 9 p policy parametric function of, using polynomial time algorithms based on robust

P

imizes E5[T*], we look for efficiently computable suboptimalsemidefinite programming, as shown in [23].

C. Pursuit Policies
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Assumption 1:For anyw,, vy € &, there exists a finite se- wherek* € {1,..., n,} is the integer for whiche* = =7 .
quence{z,(0), ..., zp(t): vo = zp(0), vy = zp(t), t € T}, Heremnav:U x {1,..., n,} x Y* — U is an underlying “nav-
such thate,, (1) € Uy, (z,(T — 1)) for eachr € 7. igation policy” which takes a list of desired positions for the

Finally, we assume that in a single time step, the conditionalirsuerse;, together with measuremeiis and produces a po-
probability of the evader being at a celle X does not decay sition reachable in a single time step that is “one step closer” to
by more than a certain amount, unless one pursuer reacies =z, or concludes that there is an obstaclejat
which case, the probability of the evader being:ahay decay = Theorem 1: If Assumptions &nd2 hold, then the global-max
to zero if the evader is not there, or if it is possible to concludmlicy g: Y* — U is an admissible pursuit policy which is
from the measured data that an obstacle iswith probability persistent on the average with peri@dé d, whered is the
one. Such an assumption holds for most sensor models.  maximum number of steps needed to travel from one cell to

Assumption 2:There is a positive constant< 1, such that any other. Moreove?(T* < colg = g) = 1, andE,[T*] <
for any sequenck; € Y, of t € 7 measurements for which neTe !, with e as in (7) and = v?¢/n, in Lemma 2
the evader was not captured Proof: By definition of the navigation policyy is admis-

pel(z, t+ 11Y3) > vpe(z, t{Ys1) (8) sible. In order to prove that is persistent on the average, we

. . . . ._show that the hypotheseslofmma 2hold. From the definition
foranyz € X forwhichz is notin the list of pursuers’ positions ¢« i (9), we have that for any € 7

specified by the last measuremenfyin and the probability of 1
an obstacle being at any given location given the measurements max - pe, (2%, t|Y:) > -

up to timet is strictly less than one for any pursuit poligy iE{Lme ) ¢

3) Greedy Policies:Given the assumptions in the previoué"'here”C is the number of cells i. Now, since a pursuer takes,

section, we now focus on finding efficiently computable subo;?—t most.d steps to reachk”, by following policy g there must

timal pursuit policies. We consider the followirggeedypoli- _eX'St somer € {t,... . t+T—2pwith T = d’_ such that th_ere
cies:local-maxandglobal-max Both policies try to maximize 'S @ PUrSUer just one step away frarm. Consider such a time
the probability of capturing an evader at the next time instant, thé"d Set» = g(Y7). Therefore, the conditional grobablllty of
difference being that local-max searches only one-step reaiiding an evader at time + 1 is given byh,(Y:) =

able cells, while global-max searches the entire map. p
Local-Max Policy.Under this policy, pursuegt moves to the hg(Yr) = ie{flnaxn ) Z pe, (@, TIY7).
cell in the one-step reachable set with the highest probabilityof 77 o k=1
containing an evader over all the evader maps, that is By Assumption Znd the fact that it takes, at moststeps to
reachz*, we have
u,(t+1) = argmax max p,(z, t +1|Y;) d
e€U(z,, (1)) i={1ne} > max pe (", T|Y;) >0 E > 0.
wherep., (z, t + 1[Y;) represents the probability of evader o ietheane) Lo e
being in cell- at timet + 1 given the measurements. Applying Lemmas Jand 2 shows that if the first evader to be

Notice that the local-max policy is advantageous in scal§@Ptured is ev?dar, thenProb(T; < oo [>= g) = 1 and
bility, since it assigns more importance to local measuremelﬁs[Tjt] < Te” ._'ll'hereforel’rob(T* < oo [>»=g)=1and
by searching only ii{(z,, ), regardless of the size of the endy[T"] < n.Te u
vironmentX'. This policy is computationally efficient, and cany
be computed independently by each pursuer in a decentralized
pursuit—evasion game. However, it can be shown thatin generalEven though the pursuit policies described in the previous
the local-max policy is not persistent on the average. section are designed for a randomly moving evader only, in Sec-

Global-Max Policy.The global-maxpolicy searches over the tion IV we will apply these policies to the case of an intelligent
entire map in order to compute the control that maximizes ti§¥ader. We allow an intelligent evader to build a map of obsta-
probability of capturing an evader. Therefore, it is more comp@les and pursuers and to employ either a local-min or global-min
tationally intensive and does not scale as well as the local-mR&IiCy so as to minimize the probability of being captured. The
policy with the size of¥'. However, as we will show below, it local-min and global-min evasion policies are defined similarly
has the nice property that it is persistent on the average.  t0 the local-max and global-max pursuit policies.

Take an arbitrary sequence of measureménts )*, and
compute the cell in the map with the maximum probability

Intelligent Evasion

0lf:_. Vision-Based Detection of Obstacles and Evaders

having an evader Assume that the pursuers are equipped with a camerato sense
. A the environment. We show how to estimate the position of ob-

T AR N P (@, t+1, [Y2). (9)  stacles and evaders from their observed positions in the image

Next define the desired positions of the pursuers as plane, the pose (rotation and translation) of the camera, and

that of the pursuer. We define the coordinate frames: a) iner-
tial frame, b) UAV frame, c) camera base, d) camera head, and
e) UGV frame, and leg;; E (Rij, pij) € SE(3) be the relative
pose of frame with respect to framg. Also, letw € so(3)

be the skew-symmetric matrix associated with axiss R?,

g(¥) s nav(z,, k%, Y) (11) and(eq, s, e3) be the usual basis faR>. If the observer is a

np

arg max max Z Pe, (Tp,, t]Y2).  (10)
Tpy s Tppy cu i€{lynel b1

Now define the global-max pursuit poligfY') as

A
*_
.L'p—
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« position of evaders

UAV, then g, = (exp(€39)) exp(éaf) exp(€1¢), pay), Where o * position of obstacles ?

(¢, 8, ¢) are the estimates of the yaw, pitch, and roll angle Strategy Planner | postions of pursvers | Map Builder
of the helicopter, ang,;, € IR? is the estimate of its position. _l_ o _i _ i_ _l

Goe = (Rpe, Apbc) is a Predefined (known) transformation anc i m Commitnications Network ey
Jgea = (exp(éza) exp(€10), 0), where(w, (3) are the estimates == - =X

evaders

of the pan and tilt angles of the camera. Then, the pose of t gvaders
etecte

camera head with respect to the fixed inertial frame is given t ||

(Rad7 pad) = (RabRbcRcd; Rabpbc + pab)- (12) "
Let x be the estimate of the position of an obstacle (evader)

the image plane. Then its 3—D position is obtained as |l

(20 — €3 Pad)
egRa(lA—lx
wherez is the (fixed)z coordinate of the evader on the ground
assuming a flat terrain, andl € IR**? is the camera calibration
matrix.

If obstacles (evaders) are being observed by a ground purst
equation (13) can still be applied with minor changes. Repla
frame b) by frame e), the UGV frame. Thét). = exp(€37),
where~ is the estimate of the heading of the UG, is the
estimate of the position of the observer, gpdis also a prede-
fined (fixed) transformation.

The vision system is also used to estimate the visibility regidrg- 2. System Architecture: Strategy planning and map building are
of each vehicle. For a ground pursuer or evader, the visibilim‘ﬂ:”ngizgend }gcmg"'?B and run ,'n-a laptop which is also used for.

. planning, regulation, and sensing are implemented in
region is defined as the trapezoid whose vertices are computsd and run in the UAV or UGV computers.
from (13), applied to the vertices of a fixed rectangle located

below the horizon on the image plane. For an aerial pursugl, Low Level: Tactical Planner, Regulation, and Sensing

Sllgzi Eziﬁggir:s'sth%o\mgg ?rg\;vné tcvehircehcizg:?s?:ézzlm?gxe_rhe Tactical Planneruses the state information maintained
P g€ bp By the strategy planner for controlling the motion of each ve-

imately rectangular visibility region. hicle. It converts strategic plans into a sequence of way points or
flight modes, which are used by tfeajectory Planneto pro-
duce arealizable and safe trajectory based on a dynamic model
In order to implement the pursuit—evasion game scenario ofthe vehicle and safety routines such as obstacle avoidance.
real UAVs and UGVs, we propose a hierarchical hybrid systefhe final trajectory is sent to tHeegulation Layerwhich per-
architecture that segments the control of each agent into dif¥rms the real-time control of the vehicle along the specified
ferent layers of abstraction, as shown in Fig. 2. The differetrgjectory.
layers allow for the same high-level intelligent control strate- Each vehicle makes observations about the environment
gies to be applicable to both UAVs and UGVs. By abstractingsing a vision system and about its state using a variety of
away the details of sensing and control of each agent, we gaamsors for position and orientation. Sensor-fusion techniques
the interoperability of a unified framework for high-level intel-are used to improve the quality of the measurements.
ligent pursuit policies across all platforms.
This section gives an overview of the different layers of af=. Implementation of High Level Control Layers
straction of our system architecture, and some details about thgye implemented thetrategy planneandmap builderin a
implementation on our fleet of UAVs and UGVs. Our archimATLAB/Simulink environment as a part of a unified platform
tecture design was inspired by the architectures of automatgflwhich to conduct both simulations and experiments. Fur-
highway systems [24], air traffic management systems [25], agtbrmore, we used a transmission control protocol (TCP) inter-
flight management systems [26]. face to connect the MATLAB-based strategy planner and map
builder with the UAVs and UGVs through the wireless LAN.
With this unified platform, we are able to seamlessly com-
The Strategy Planneis responsible for the high-level intel-bine experiments and simulations. In simulation mode, the
ligent control of the vehicles, i.e., the pursuit policy compustrategy planner sends control commands over TCP to a UAV
tation described in Section II-C. It maintains a state-space simulator obtained from system identification [9] and to a
the system useful for mission planning, and tasks the agents dGV simulator. Visibility regions are simulated according to
cording to mission objectives. the state variables of each vehicle, and the detection of evaders
The Map Buildergathers sensor information from each veand obstacles is simulated with probabilistic sensor models. In
hicle and computes probabilistic maps with the locations of obxperiment mode, theamestrategy planner sends commands
stacles and evaders as described'in Section 11-B. over TCP to the actual UAVs and UGVs, while tlsame

pursuers pursuers| obstgcles
positions positiong detegted

_ obstacles detected -

< Vehicle-level
stale oTpUSUSTS | gensor fusion

« obstacles

detected

+ evaders
detected

" ——— —— —
desired = A A I

Tactical Planner
& Regulation

RadA_IX + Pad (13) control

signals

q:

Exogenous
J(isturbance /-

I1l. SYSTEM ARCHITECTURE

A. High Level: Strategy Planner and Map Builder
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TABLE | TABLE I
SIMULATION RESULTS EXPERIMENTAL RESULTS
Exp Purs. Purs. Evad. Evad. Visib. Capt. Exp Purs. Purs. Evad. Evad. Visib. Capt.
Policy Speed Policy Speed Region Time Policy = Speed Policy Speed Region Time
L-max 0.3 Rand 0.3 Omni 279s 1 G-max 0.3 Rand 0.1 Omni 105s
L-max 0.3 Rand 0.3 Trap 184s 2 G-max 0.3 Rand 0.1 Trap 42s
G-max 0.3 Rand 0.3 Omni 86s 3 G-max 0.3 Rand 0.5 Trap 37s

G-max 0.3 Rand 0.3 Trap 67s
G-max 0.3 Rand 0.5 Trap 56s
G-max 0.3 Rand 0.1 Trap 92s
G-max 0.3 G-min 0.1 Trap 151s
G-max 0.3 G-min 0.5 Trap 168s

0O~ O Ui W N -

map builder receives vehicle locations from the GPS/Inertial
Navigation System (INS), and visibility regions and locations
of obstacles and evaders from the vision system.

D. Implementation of Low Level Control Layers

Our UAVs fleet consists of custom-designed UAVs based on
Yamaha R-50 and R-Max industrial helicopters. The trajectory
planner and regulation layers are implemented in C on an em-
bedded PC running the QNX real-time operating system (OS). §
The low-level controller has a TCP interface that asynchro-
nously receives desired setpoints from the high-level strategy
planner, and reports the UAVS’ current position. The vision
system used to detect obstacles and evaders is implemente
in C++ on a second PC running Linux. See [9] and [27] for
further details.

Our UGVs fleet consists of ActivMedia Pioneer 2-AT all-terig. 3. Experiment 1: An actual game between three UGV pursuers and one
rain ground robots. The tactical/trajectory planner and requldGV evader. The pursuers P1, P2, and RBriove at 0.3 m/s and use the
. . . .. obal-max policy with an omnidirectional visibility region. The evader E1
tion layer run on a microcontroller, while the vision system rur%Oves randomly at 0.1 m/s.
on a PC running Linux. See [8] for details.

UAVs and UGVs share the following components for sensing
and communication: IEEE 802.11b wireless LAN connectivity,
differential GPS, a PC104 Pentium 233MHz-based PC running
Linux, and a color-tracking vision system. All these components
are described in detail in [8].

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present simulation and experimental
results of pursuit-evasion games on our fleet of UAVs and
UGVs23 Table | presents the mean capture time of 10 simu-
lations between three pursuers and one evader with random
initial conditions. Simulations 1-4 evaluate the performance
of the two pursuit policies against a randomly moving evader
for two types of visibility regions: an omnidirectional view
Sy, 4 and a trapezoidal viewi,, .5 Simulations 5-8 evaluate the
performance of the global-max policy with a trapezoidal view
for different speeds and levels of intelligence of the evader.

43

Table 1l presents results of real experiments between three L —— T T v w R oW oW e w

UGV pursuers and one UGV evader. Fig. 3 shows the evolution

of Experiment 1 through photographs and corresponding Sngg_. 4. Experiment 2: Three UGV pursuers versissoavUGV evader.

shots created by the map builder. The darker cells in the map ) o N _
represent regions with higher probability of having an evader.
3All the experiments are performed in a 204120 m environment with 1 m FigS. 4 and 5 show the map-building snapshots for Experiments
X 1 msquare cellyy = ¢ = 0.1, andd,,, = 1.5 m. 2 and 3 respectively

5 (¢) s @ square of side 5 m, centeredig, (¢). A Fig. 6 shows snapshots from Experiment 4: A game with one
SWe are using the set difference operator 727, () = A(x,, (1), 45°, 7 : :
m)/A(,, (£), 45, 1 m), whereA(, ¢, A) denotes an isosceles triangle with UAY and two UGV pursuers and one evader. The game parame-

vertex:, height’, and angles . ters were similar to those in Table II: Pursuer speed was 0.3 m/s,
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Capture Time versus Evasion Policggimulations 5-8 in
Table | evaluate the global-max pursuit policy against an evader
following either a random or a global-min evasion policy.
Since the global-max pursuit policy is designed for a randomly
moving evader, there is no guarantee that the expected capture
time will be finite for the case of an intelligent evader. We
conclude from the simulations that it takes longer to capture an
intelligent evader than a randomly moving one. Also, for a fast
evader, it takes 300% longer to capture an intelligent one than
a randomly moving one, while for a slow evader, it takes only

64% longer.
Capture Time versus Evader Speegimulations 5 and 6 in
v

1 Table | show that it takes longer to capture a slower random
evader than a faster random evader. This is because a faster

: random evader visits more cells in the map, increasing the

i .’?/ chances of being detected. This argument can be applied to

Fig. 5. The higher speed of E1 allows it to move away from the

T w e w o= N B S R visibility region of P2 fort € [0, 14], but E1 soon moves into

the visibility region of P3 and is quickly captured.

UAV Pursuer versus UGV PursueBimulation results in
[28] and Experiment 4 show that the local-max policy has a
similar performance with either a UAV or UGV pursuer, while
the global-max policy performs better with a UAV pursuer.

Fig. 5. Experiment 3: Three UGV pursuers versdiastUGV evader.

V. CONCLUSIONS

We presented a probabilistic approach to pursuit—eva-
sion games involving UAVs and UGVs. We considered two
computationally feasible greedy pursuit policidecal-max
and global-max We proved that for the global-max policy
there exists an upper bound on the expected capture time
which depends on the size of the arena, and the speed and
sensing capabilities of the pursuers. Next, we presented an
implemention of the scenario on a fleet of UAVs and UGVs
based on a hierarchical hybrid system architecture. Finally,
we presented several experiments, evaluating the performance

© (d) of the proposed pursuit policies with respect to the speed and
Fig. 6. Experiment 4: one UAV and two UGV pursuers versus one UG{Pte”igence of the evaders and the sensing capabilitie_s of _the
evader. (a) Initial configuration, evader on the left. (b) UAV pursuer detecRUrSUErs. Our results show that the global-max pursuit policy
evader. (c) UGV pursuers head toward global-max. (d) UGV pursuer captuggtperforms the local-max policy in a realistic situation in
evader. which the dynamics of each agent are included and computer

vision is used to detect the evaders.
evader speed was 0.1 m/s, the evader moved randomly, pursuers

had trapezoidal visibility regions, and followed the global-max ACKNOWLEDGMENT
policy. The capture time was 30 s.
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