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Abstract—We consider the problem of having a team of
unmanned aerial vehicles (UAVs) and unmanned ground vehicles
(UGVs) pursue a second team of evaders while concurrently
building a map in an unknown environment. We cast the problem
in a probabilistic game theoretical framework, and consider two
computationally feasible greedy pursuit policies:local-max and
global-max. To implement this scenario on real UAVs and UGVs,
we propose a distributed hierarchical hybrid system architecture
which emphasizes the autonomy of each agent, yet allows for
coordinated team efforts. We describe the implementation of the
architecture on a fleet of UAVs and UGVs, detailing components
such as high-level pursuit policy computation, map building and
interagent communication, and low-level navigation, sensing, and
control. We present both simulation and experimental results
of real pursuit–evasion games involving our fleet of UAVs and
UGVs, and evaluate the pursuit policies relating expected capture
times to the speed and intelligence of the evaders and the sensing
capabilities of the pursuers.

Index Terms—Autonomous vehicles, multiagent coordination
and control, multirobot systems, pursuit–evasion games.

I. INTRODUCTION

T HE BErkeley AeRobot (BEAR) project is a research
effort at the University of California at Berkeley that en-

compasses the disciplines of hybrid systems theory, navigation,
control, computer vision, communications, and multiagent
coordination. The goal of our research is to integrate multiple
autonomous agents with heterogenous capabilities into a coor-
dinated and intelligent system that is modular, scalable, fault
tolerant, adaptive to changes in task and environment, and able
to efficiently perform complex missions. This paper highlights
the theory, implementation, and evaluation of probabilistic
pursuit–evasion games on the BEAR test bed of unmanned
aerial vehicles (UAVs) and unmanned ground vehicles (UGVs)
shown in Fig. 1.

In this scenario, a team of UAV and UGVpursuersattempts
to captureevaderswithin a bounded but unknown environment.
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Fig. 1. Berkeley AeRobot test bed for pursuit–evasion games.

We cast the problem in a probabilistic game theoretical frame-
work that combines pursuit–evasion games and map building
in asingleproblem, which avoids the conservativeness inherent
to classical worst-case approaches. We consider two computa-
tionally feasible pursuit policies:local-maxandglobal-max. We
prove that for the global-max policy, there exists an upper bound
on the expected capture time which depends on the size of the
arena, and the speed and sensing capabilities of the pursuers.

In order to implement this pursuit–evasion game scenario
on a fleet of UAVs and UGVs, we propose a distributed hi-
erarchical hybrid system architecture that segments the con-
trol task into different layers of abstraction: high-level pursuit
policy computation, map building and interagent communica-
tion, and low-level tactical planning, navigation, regulation, and
sensing. Our architecture is modular and scalable, allowing one
to “divide and conquer” a complex large-scale system by de-
veloping and integrating simpler components. Unlike the tra-
ditionalsense–model–plan–actdecomposition, our architecture
takes into consideration the dynamics of each agent so that our
system can achieve real-time performance.

We evaluate the proposed probabilistic framework and hierar-
chical architecture through simulation and experimental results
on our fleet of UAVs and UGVs. Using the expected capture
time as the performance criterion, we compare the local-max
and global-max pursuit policies on numerous situations, varying
the speed and intelligence of the evaders and the sensing capa-
bilities of the pursuers. Our experimental results show that the
global-max policy outperforms the local-max policy in a real-
istic situation, in which the dynamics of each agent are included
and computer vision is used to detect the evaders. Furthermore,
our experiments show that the global-max policy is robust to
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www.manaraa.com

VIDAL et al.: PROBABILISTIC PURSUIT–EVASION GAMES: THEORY, IMPLEMENTATION, AND EXPERIMENTAL EVALUATION 663

changes in the conditions of the game. Even though it is de-
signed for a randomly moving evader, the policy is also suc-
cessful in catching an intelligent evader.

A. Previous Research in Pursuit–Evasion Games

The classical approach to pursuit–evasion games is to first
build a map of the terrain and then play the game in a known
environment. For the map-building stage, several techniques
have been proposed, see, e.g., [1] and references therein. Most
of them are based on Bayesian estimation and are implemented
using the Extended Kalman Filter. The main problem with
these map-building techniques is that they are time consuming
and computationally expensive, even in the case of simple
two-dimensional (2-D) rectilinear environments [2]. On the
other hand, most of the literature in pursuit–evasion games, see
e.g., [3]–[6], assumes worst-case motion for the evaders and
an accurate map of the environment. In practice, this results in
overly conservative pursuit policies applied to inaccurate maps
built from noisy measurements.

In [7], the pursuit–evasion game and map-building problems
are combined in a single probabilistic framework. The basic
scenario considers multiple pursuers trying to capture a single
randomly moving evader. In [8], we extended the scenario to
consider multiple evaders, and proposed a simple vision-based
algorithm for evader detection. We also included supervisory
agents, such as a helicopter, that can detect evaders but not cap-
ture them. In parallel with our theoretical work on pursuit–eva-
sion games, we have been developing a test bed for multiagent
coordination and control. In [9], we presented a real-time con-
trol system for regulation and navigation of a UAV. In [8], we
presented an architecture for pursuit–evasion games, and de-
scribed the implementations of the navigation, communication,
and sensing layers. In [10], we presented the implementation of
the high-level mission coordination, including the components
for pursuit policy computation and map building.

Recent work on pursuit–evasion games considers evaders that
actively avoid the pursuers, as described in [11], where a dy-
namic programming solution to a Stackelberg equilibrium of a
partial-information Markov process is proposed. There has also
been work on vision-based pursuit–evasion games, where the
pursuers use optical flow to determine the number of moving
evaders as well as their position and orientation [12]. Implemen-
tation and evaluation of these two techniques is forthcoming.

B. Previous Research in Multirobot Systems

The multiagent pursuit–evasion game scenario considered in
this paper fits within the general framework of multirobot sys-
tems. There exists a large body of literature in multirobot sys-
tems addressing problems such as machine-learning techniques
for multiagent systems [13], hybrid algorithms for multiagent
control [14], multirobot localization [15], distributed sensor fu-
sion [16], and formation control [17].

As for application of multirobot systems in robot soccer, we
refer the reader to [18] and [19] for centralized coordination and
control of multiple robots, and to [20] and [21] for completely
distributed systems.

II. PURSUIT–EVASION SCENARIO

This section describes the theoretical foundations for proba-
bilistic pursuit–evasion games, including map building, pursuit
policies, and evasion policies. We also describe a vision-based
algorithm for obstacle and evader detection.

Notation. We denote by the relevantprobability
spacewith the set of all possible events related to the pur-
suit–evasion game, a family of subsets of forming a al-
gebra, and a probability measure on . Given
two sets of events with , we write
for theconditional probability of given . Boldface symbols
are used to denote random variables.

A. Probabilistic Framework

Consider a finite 2–D environment with square cells
containing an unknown number of fixed obstacles, and let

( ) be the set of cells occupied by the pursuers (
evaders). Pursuers and evaders are allowed to move to cells in

in which there is no other pursuer, evader, or obstacle.
Each pursuer (evader) collects information aboutat dis-

crete time instants . Each measurement
is a triple taking values in a measure-

ment space , where denotes the measured positions of the
pursuers, and is a set of cells where evaders (obsta-
cles) are detected. We let be the set of all finite sequences of
elements in , and be the sequence of measurements

taken up to time. In practice, measurements
are taken within a certain subset of: the visibility region. We
denote the visibility region of pursuer(evader ) at time as

.
Sensor information is assumed to be imperfect. We use a

simple sensor model based on the probability of false positives
and false negatives of a pursuer detecting

an evader or an obstacle. However, we assume that pursuers have
perfect knowledge of their own locations, that is .1

Captureof an evader is defined as follows: Let
and be the estimated positions of ground pursuer

and evader at time , respectively. We say that evaderis
captured by ground pursuerat time if and

, where is a metric in and is
a prespecifiedcapture distance. Captured evaders are removed
from the game. Thecapture timeof all evaders is defined as

, where is the time instant at which
evader is captured. We assume that aerial pursuers can detect
and share information about the positions of evaders, but not
capture them.

B. Map Building

We assume that pursuers are able to identify each evader
separately, and that each evader moves independently of the
other evaders. Therefore, without loss of generality, we will
assume and omit the subscript identifying each evader.
Let be the posterior probability of the evader being

1This assumption is unrealistic in general, although valid when a global po-
sitioning system (GPS) is used for pursuer localization and vision is used for
evader detection.
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in cell at time , given the measurement history .
Similarly, let be the conditional probability of having
an obstacle in cell given . At each , pursuers have estimates
of the evader and obstaclemaps and ,
obtain a new measurement , and recursively estimate

and in three steps. First, pursuers
compute as

if or the evader is captured
otherwise

(1)
where is a normalizing constant independent of, and

otherwise.
(2)

Here, for each , is the number of false positives, is the
number of true negatives, is the number of false negatives,
and is the number of true positives. Recall thatand are
the probability of the sensor reporting false positives and false
negatives, respectively.

Second, pursuers compute the obstacle map as

otherwise
(3)

where .
Finally, in order to compute , pursuers assume

a Markov model for the motion of the evader which is deter-
mined by the probability that the evader moves
to an unoccupied cell in , where is the set of (up to
eight) cells adjacent to. The evader map is up-
dated as

(4)

C. Pursuit Policies

Given the measurement history , the pursuers need
to decide where to move at the next time instant. Let

be the desired position of the
pursuers at time. Since two pursuers must not occupy the
same cell, is an element of the control action space

for . We define a
pursuit policyas the random function

(5)

We measure the performance of a specific pursuit policy
by the expected capture time . Since
the dependence of on the pursuit policy is, in general,
very complex [7], instead of finding the optimal policy that min-
imizes , we look for efficiently computable suboptimal

policies with good performance. To this end, we first introduce
the notion of a persistent pursuit policy [7] and show that it
guarantees a certain degree of success for the pursuers. We then
present two computationally efficient greedy policies and show
that one of them satisfies the persistence property, given certain
assumptions on the distribution of the obstacles and the sensing
models.

1) Persistent on the Average Pursuit Policies: A specific
pursuit policy is said to bepersistent on the average
if there is an integer and some , such that for each

, the conditional probability of capturing evaderon the
set of consecutive time instants starting atis greater than
or equal to , i.e.

(6)

We call the period of persistence. Persistent on the average
pursuit policies satisfy the following [7]:

Lemma 1: If is a persistent on the average pursuit
policy with period , then , and

, with as in (6).
Lemma 1shows that for a pursuit policy which is persistent

on the average, the probability of capturing evaderin finite
time is equal to one. Moreover,Lemma 1gives a simple upper
bound on the expected capture time for evader. The following
lemma (proved in [22]) gives a sufficient condition for a policy
to be persistent on the average.

Lemma 2: Let , be the set of all sequences of measure-
ments of length, associated with evadernot being found up
to time . A sufficient condition for a pursuit policy to be per-
sistent on the average with periodis the existence of some

, such that for each and each , there
is some for which

. In this case, (6) holds with

(7)

2) Admissible Policies, Obstacle Density, and Sensor
Models: In order to applyLemmas 1and2 to a specific pursuit
policy, we will need some extra assumptions on the dynamics
of the pursuers, the distribution of the obstacles, and the sensor
models used for evader detection.

First, we restrict our attention to pursuit policies that re-
spect the dynamics of each vehicle. Let be
the set of cells that pursuer can reach from cell in
one time step, provided that those cells are empty, and let

.2 We say that a pursuit policy is
admissibleif for every sequence of measurements ,
we have , where are the
pursuers’ positions specified by the last measurement in.

Next, we assume that the density of obstacles in the environ-
ment is small enough so that any cell incan be reached in a
finite amount of time. More formally

2The one-step reachable setU (x ) can be computed offline as a
parametric function ofx using polynomial time algorithms based on robust
semidefinite programming, as shown in [23].
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Assumption 1:For any , there exists a finite se-
quence ,
such that for each .

Finally, we assume that in a single time step, the conditional
probability of the evader being at a cell does not decay
by more than a certain amount, unless one pursuer reaches, in
which case, the probability of the evader being atmay decay
to zero if the evader is not there, or if it is possible to conclude
from the measured data that an obstacle is atwith probability
one. Such an assumption holds for most sensor models.

Assumption 2:There is a positive constant , such that
for any sequence of measurements for which
the evader was not captured

(8)

for any for which is not in the list of pursuers’ positions
specified by the last measurement in, and the probability of
an obstacle being at any given location given the measurements
up to time is strictly less than one for any pursuit policy.

3) Greedy Policies:Given the assumptions in the previous
section, we now focus on finding efficiently computable subop-
timal pursuit policies. We consider the followinggreedypoli-
cies:local-maxandglobal-max. Both policies try to maximize
the probability of capturing an evader at the next time instant, the
difference being that local-max searches only one-step reach-
able cells, while global-max searches the entire map.

Local-Max Policy.Under this policy, pursuer moves to the
cell in the one-step reachable set with the highest probability of
containing an evader over all the evader maps, that is

where represents the probability of evader
being in cell at time given the measurements.

Notice that the local-max policy is advantageous in scala-
bility, since it assigns more importance to local measurements
by searching only in , regardless of the size of the en-
vironment . This policy is computationally efficient, and can
be computed independently by each pursuer in a decentralized
pursuit–evasion game. However, it can be shown that in general,
the local-max policy is not persistent on the average.

Global-Max Policy.Theglobal-maxpolicy searches over the
entire map in order to compute the control that maximizes the
probability of capturing an evader. Therefore, it is more compu-
tationally intensive and does not scale as well as the local-max
policy with the size of . However, as we will show below, it
has the nice property that it is persistent on the average.

Take an arbitrary sequence of measurements , and
compute the cell in the map with the maximum probability of
having an evader

(9)

Next define the desired positions of the pursuers as

(10)

Now define the global-max pursuit policy as

(11)

where is the integer for which .
Here, is an underlying “nav-
igation policy” which takes a list of desired positions for the
pursuers , together with measurements, and produces a po-
sition reachable in a single time step that is “one step closer” to

, or concludes that there is an obstacle at.
Theorem 1: If Assumptions 1and2hold, then the global-max

policy is an admissible pursuit policy which is
persistent on the average with period , where is the
maximum number of steps needed to travel from one cell to
any other. Moreover, , and

, with as in (7) and in Lemma 2.
Proof: By definition of the navigation policy, is admis-

sible. In order to prove that is persistent on the average, we
show that the hypotheses ofLemma 2hold. From the definition
of in (9), we have that for any

where is the number of cells in . Now, since a pursuer takes,
at most, steps to reach , by following policy there must
exist some with , such that there
is a pursuer just one step away from. Consider such a time

and set . Therefore, the conditional probability of

finding an evader at time is given by

By Assumption 2and the fact that it takes, at most,steps to
reach , we have

Applying Lemmas 1and2 shows that if the first evader to be
captured is evader, then and

. Therefore, and

D. Intelligent Evasion

Even though the pursuit policies described in the previous
section are designed for a randomly moving evader only, in Sec-
tion IV we will apply these policies to the case of an intelligent
evader. We allow an intelligent evader to build a map of obsta-
cles and pursuers and to employ either a local-min or global-min
policy so as to minimize the probability of being captured. The
local-min and global-min evasion policies are defined similarly
to the local-max and global-max pursuit policies.

E. Vision-Based Detection of Obstacles and Evaders

Assume that the pursuers are equipped with a camera to sense
the environment. We show how to estimate the position of ob-
stacles and evaders from their observed positions in the image
plane, the pose (rotation and translation) of the camera, and
that of the pursuer. We define the coordinate frames: a) iner-
tial frame, b) UAV frame, c) camera base, d) camera head, and
e) UGV frame, and let be the relative
pose of frame with respect to frame. Also, let
be the skew-symmetric matrix associated with axis ,
and be the usual basis for . If the observer is a
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UAV, then , where
are the estimates of the yaw, pitch, and roll angles

of the helicopter, and is the estimate of its position.
is a predefined (known) transformation and

, where are the estimates
of the pan and tilt angles of the camera. Then, the pose of the
camera head with respect to the fixed inertial frame is given by

(12)

Let be the estimate of the position of an obstacle (evader) in
the image plane. Then its 3–D position is obtained as

(13)

where is the (fixed) coordinate of the evader on the ground,
assuming a flat terrain, and is the camera calibration
matrix.

If obstacles (evaders) are being observed by a ground pursuer,
equation (13) can still be applied with minor changes. Replace
frame b) by frame e), the UGV frame. Then ,
where is the estimate of the heading of the UGV, is the
estimate of the position of the observer, andis also a prede-
fined (fixed) transformation.

The vision system is also used to estimate the visibility region
of each vehicle. For a ground pursuer or evader, the visibility
region is defined as the trapezoid whose vertices are computed
from (13), applied to the vertices of a fixed rectangle located
below the horizon on the image plane. For an aerial pursuer,
since the camera is pointing down, the rectangle on the image
plane is chosen as the whole image, which results in an approx-
imately rectangular visibility region.

III. SYSTEM ARCHITECTURE

In order to implement the pursuit–evasion game scenario on
real UAVs and UGVs, we propose a hierarchical hybrid system
architecture that segments the control of each agent into dif-
ferent layers of abstraction, as shown in Fig. 2. The different
layers allow for the same high-level intelligent control strate-
gies to be applicable to both UAVs and UGVs. By abstracting
away the details of sensing and control of each agent, we gain
the interoperability of a unified framework for high-level intel-
ligent pursuit policies across all platforms.

This section gives an overview of the different layers of ab-
straction of our system architecture, and some details about the
implementation on our fleet of UAVs and UGVs. Our archi-
tecture design was inspired by the architectures of automated
highway systems [24], air traffic management systems [25], and
flight management systems [26].

A. High Level: Strategy Planner and Map Builder

TheStrategy Planneris responsible for the high-level intel-
ligent control of the vehicles, i.e., the pursuit policy compu-
tation described in Section II-C. It maintains a state-space of
the system useful for mission planning, and tasks the agents ac-
cording to mission objectives.

The Map Buildergathers sensor information from each ve-
hicle and computes probabilistic maps with the locations of ob-
stacles and evaders as described in Section II-B.

Fig. 2. System Architecture: Strategy planning and map building are
implemented in MATLAB and run in a laptop which is also used for
visualization. Tactical planning, regulation, and sensing are implemented in
C++ and run in the UAV or UGV computers.

B. Low Level: Tactical Planner, Regulation, and Sensing

The Tactical Planneruses the state information maintained
by the strategy planner for controlling the motion of each ve-
hicle. It converts strategic plans into a sequence of way points or
flight modes, which are used by theTrajectory Plannerto pro-
duce a realizable and safe trajectory based on a dynamic model
of the vehicle and safety routines such as obstacle avoidance.
The final trajectory is sent to theRegulation Layer, which per-
forms the real-time control of the vehicle along the specified
trajectory.

Each vehicle makes observations about the environment
using a vision system and about its state using a variety of
sensors for position and orientation. Sensor-fusion techniques
are used to improve the quality of the measurements.

C. Implementation of High Level Control Layers

We implemented thestrategy plannerandmap builderin a
MATLAB/Simulink environment as a part of a unified platform
on which to conduct both simulations and experiments. Fur-
thermore, we used a transmission control protocol (TCP) inter-
face to connect the MATLAB-based strategy planner and map
builder with the UAVs and UGVs through the wireless LAN.

With this unified platform, we are able to seamlessly com-
bine experiments and simulations. In simulation mode, the
strategy planner sends control commands over TCP to a UAV
simulator obtained from system identification [9] and to a
UGV simulator. Visibility regions are simulated according to
the state variables of each vehicle, and the detection of evaders
and obstacles is simulated with probabilistic sensor models. In
experiment mode, thesamestrategy planner sends commands
over TCP to the actual UAVs and UGVs, while thesame
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TABLE I
SIMULATION RESULTS

map builder receives vehicle locations from the GPS/Inertial
Navigation System (INS), and visibility regions and locations
of obstacles and evaders from the vision system.

D. Implementation of Low Level Control Layers

Our UAVs fleet consists of custom-designed UAVs based on
Yamaha R-50 and R-Max industrial helicopters. The trajectory
planner and regulation layers are implemented in C on an em-
bedded PC running the QNX real-time operating system (OS).
The low-level controller has a TCP interface that asynchro-
nously receives desired setpoints from the high-level strategy
planner, and reports the UAVs’ current position. The vision
system used to detect obstacles and evaders is implemented
in C++ on a second PC running Linux. See [9] and [27] for
further details.

Our UGVs fleet consists of ActivMedia Pioneer 2-AT all-ter-
rain ground robots. The tactical/trajectory planner and regula-
tion layer run on a microcontroller, while the vision system runs
on a PC running Linux. See [8] for details.

UAVs and UGVs share the following components for sensing
and communication: IEEE 802.11b wireless LAN connectivity,
differential GPS, a PC104 Pentium 233MHz-based PC running
Linux, and a color-tracking vision system. All these components
are described in detail in [8].

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present simulation and experimental
results of pursuit–evasion games on our fleet of UAVs and
UGVs.3 Table I presents the mean capture time of 10 simu-
lations between three pursuers and one evader with random
initial conditions. Simulations 1–4 evaluate the performance
of the two pursuit policies against a randomly moving evader
for two types of visibility regions: an omnidirectional view

4 and a trapezoidal view .5 Simulations 5–8 evaluate the
performance of the global-max policy with a trapezoidal view
for different speeds and levels of intelligence of the evader.

Table II presents results of real experiments between three
UGV pursuers and one UGV evader. Fig. 3 shows the evolution
of Experiment 1 through photographs and corresponding snap-
shots created by the map builder. The darker cells in the map

3All the experiments are performed in a 20 m� 20 m environment with 1 m
� 1 m square cells,p = q = 0:1, andd = 1:5 m.

4S (t) is a square of side 5 m, centered atx (t).
5We are using the set difference operator /->T (t) = 4(x (t), 45�, 7

m)=4(x (t), 45�, 1 m), where4(x; �; h) denotes an isosceles triangle with
vertexx, heighth, and angle�.

TABLE II
EXPERIMENTAL RESULTS

Fig. 3. Experiment 1: An actual game between three UGV pursuers and one
UGV evader. The pursuers P1, P2, and P3 (?) move at 0.3 m/s and use the
global-max policy with an omnidirectional visibility region. The evader E1
moves randomly at 0.1 m/s.

Fig. 4. Experiment 2: Three UGV pursuers versus aslowUGV evader.

represent regions with higher probability of having an evader.
Figs. 4 and 5 show the map-building snapshots for Experiments
2 and 3, respectively.

Fig. 6 shows snapshots from Experiment 4: A game with one
UAV and two UGV pursuers and one evader. The game parame-
ters were similar to those in Table II: Pursuer speed was 0.3 m/s,
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Fig. 5. Experiment 3: Three UGV pursuers versus afastUGV evader.

(a) (b)

(c) (d)

Fig. 6. Experiment 4: one UAV and two UGV pursuers versus one UGV
evader. (a) Initial configuration, evader on the left. (b) UAV pursuer detects
evader. (c) UGV pursuers head toward global-max. (d) UGV pursuer captures
evader.

evader speed was 0.1 m/s, the evader moved randomly, pursuers
had trapezoidal visibility regions, and followed the global-max
policy. The capture time was 30 s.

A. Discussion of Simulation and Experimental Results

Capture Time versus Visibility Region:Simulations 1–4 in
Table I and Experiments 1–3 in Table II show that, regardless of
the pursuit policy, pursuers with trapezoidal vision outperform
those with omnidirectional vision. Even though at a given
time instant both visibility regions cover approximately the
same number of cells, a pursuer with a trapezoidal view can
change its heading, thus covering many morenewcells than a
pursuer with an omnidirectional view. This agrees with natural
predator/prey systems.

Capture Time versus Pursuit Policy:Simulations 1–4 in
Table I show that the global-max policy generally outperforms
the local-max policy. This is expected since the global-max
policy is persistent on average, while the local-max is not.

Capture Time versus Evasion Policy:Simulations 5–8 in
Table I evaluate the global-max pursuit policy against an evader
following either a random or a global-min evasion policy.
Since the global-max pursuit policy is designed for a randomly
moving evader, there is no guarantee that the expected capture
time will be finite for the case of an intelligent evader. We
conclude from the simulations that it takes longer to capture an
intelligent evader than a randomly moving one. Also, for a fast
evader, it takes 300% longer to capture an intelligent one than
a randomly moving one, while for a slow evader, it takes only
64% longer.

Capture Time versus Evader Speed:Simulations 5 and 6 in
Table I show that it takes longer to capture a slower random
evader than a faster random evader. This is because a faster
random evader visits more cells in the map, increasing the
chances of being detected. This argument can be applied to
Fig. 5. The higher speed of E1 allows it to move away from the
visibility region of P2 for , but E1 soon moves into
the visibility region of P3 and is quickly captured.

UAV Pursuer versus UGV Pursuer:Simulation results in
[28] and Experiment 4 show that the local-max policy has a
similar performance with either a UAV or UGV pursuer, while
the global-max policy performs better with a UAV pursuer.

V. CONCLUSIONS

We presented a probabilistic approach to pursuit–eva-
sion games involving UAVs and UGVs. We considered two
computationally feasible greedy pursuit policies:local-max
and global-max. We proved that for the global-max policy
there exists an upper bound on the expected capture time
which depends on the size of the arena, and the speed and
sensing capabilities of the pursuers. Next, we presented an
implemention of the scenario on a fleet of UAVs and UGVs
based on a hierarchical hybrid system architecture. Finally,
we presented several experiments, evaluating the performance
of the proposed pursuit policies with respect to the speed and
intelligence of the evaders and the sensing capabilities of the
pursuers. Our results show that the global-max pursuit policy
outperforms the local-max policy in a realistic situation in
which the dynamics of each agent are included and computer
vision is used to detect the evaders.
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